首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94901篇
  免费   13136篇
  国内免费   9296篇
化学   37181篇
晶体学   642篇
力学   8767篇
综合类   1463篇
数学   26783篇
物理学   42497篇
  2024年   137篇
  2023年   908篇
  2022年   1659篇
  2021年   2874篇
  2020年   2980篇
  2019年   2810篇
  2018年   2545篇
  2017年   3104篇
  2016年   3671篇
  2015年   3203篇
  2014年   4670篇
  2013年   7544篇
  2012年   5391篇
  2011年   6163篇
  2010年   5283篇
  2009年   6329篇
  2008年   6260篇
  2007年   6418篇
  2006年   5333篇
  2005年   4321篇
  2004年   3928篇
  2003年   3612篇
  2002年   3356篇
  2001年   2839篇
  2000年   2404篇
  1999年   1986篇
  1998年   1864篇
  1997年   1411篇
  1996年   1298篇
  1995年   1202篇
  1994年   1130篇
  1993年   1020篇
  1992年   968篇
  1991年   722篇
  1990年   647篇
  1989年   551篇
  1988年   536篇
  1987年   483篇
  1986年   457篇
  1985年   595篇
  1984年   488篇
  1983年   274篇
  1982年   474篇
  1981年   606篇
  1980年   521篇
  1979年   572篇
  1978年   468篇
  1977年   377篇
  1976年   317篇
  1973年   214篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
71.
Influence theory is a foundational theory of physics that is not based on traditional empirically defined concepts, such as positions in space and time, mass, energy, or momentum. Instead, the aim is to derive these concepts, and their empirically determined relationships, from a more primitive model. It is postulated that there exist things, which are call particles, that influence one another in a discrete and directed fashion resulting in a partially ordered set of influence events. The problem of consistent quantification of the influence events is considered. Observers are modeled as particle chains (observer chains) as if an observer were able to track a particle and quantify the influence events that the particle experiences. From these quantified influence events, consistent quantification of the universe of events based on the observer chains is studied. Herein, the kinematics and dynamics of particles from the perspective of influence theory are both reviewed and further developed.  相似文献   
72.
Oxidative dehydrogenation (ODH) of n-octane was carried out over a vanadium–magnesium oxide catalyst in a continuous flow fixed bed reactor. The catalyst was characterized by ICP–OES, powder XRD and SEM. The catalytic tests were carried out at different gas hourly space velocities (GHSVs), viz. 4000, 6000, 8000, and 10,000 h?1. The best selectivity for octenes was obtained at the GHSV of 8000 h?1, while that for C8 aromatics was attained at the GHSV of 6000 h?1 at high temperatures (500 and 550 °C). The catalytic testing at the GHSV of 10,000 h?1 showed the lowest activity, while that at the GHSV of 4000 h?1 consistently showed the lowest ODH selectivity. Generally, the best ODH performance was obtained by the catalytic testing at the GHSVs of 6000 and 8000 h?1. No phasic changes were observed after the catalytic testing.  相似文献   
73.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   
74.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
75.
Organic–inorganic hybrid perovskite-type multiferroics have attracted considerable research interest owing to their fundamental scientific significance and promising technological applications in sensors and multiple-state memories. The recent achievements with divalent metal dicyanamide compounds revealed such malleable frameworks as a unique platform for developing novel functional materials. Herein, two 3D organic–inorganic hybrid perovskites [Et3P(CH2)2F][Mn(dca)3] ( 1 ) and [Et3P(CH2)2Cl][Mn(dca)3] ( 2 ) (dca=dicyanamide, N(CN)2) are presented. Accompanying the sequential phase transitions, they display a broad range of intriguing physical properties, including above room temperature ferroelastic behavior, switchable dielectricity, and low-temperature antiferromagnetic ordering (Tc=2.4 K for both 1 and 2 ). It is also worth noting that the spontaneous strain value of 1 is far beyond that of 2 in the first ferroelastic phase, as a result of the precise halogen substitution. From the point view of molecular design, this work should inspire further exploration of multifunctional molecular materials with desirable properties.  相似文献   
76.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
77.
Two new Zn2Dy2 complexes were constructed from Zn (II) salen‐type Schiff base complex fragment and 2,6‐pyridinedimethanol (H2pdm) or its Br‐substituted analogue (4‐bromopyridine‐2,6‐diyl)dimethanol (H2Brpdm); their molecular formulas are [Zn2Dy2(L)2(pdm)2(MeOH)2](ClO4)2 [ 1 , H2L = N, N′‐ bis(3‐methoxysalicylidene)‐1,3‐diaminopropane] and [Zn2Dy2(L)2(Brpdm)2(MeOH)2](ClO4)2 [ 2 ], the Dy (III) ions of which have a NO7 triangular dodecahedral coordination sphere. The two complexes show not only ferromagnetic interaction but also field‐induced single‐molecule magnet (SMM) behavior, which are rare Dy (III)‐containing cluster complexes with the NO7 triangular dodecahedral coordination sphere that can show good magnetic relaxation. The energy barrier value of complex 2 is higher than those of complex 1 and the Dy (III) complexes with the DyNO7 triangular dodecahedral coordination configuration reported in the literature.  相似文献   
78.
We establish the global well-posedness of a strong solution to the 3D tropical climate model with damping. We prove that there exists the global and unique solution for α, β, γ satisfying one of the following three conditions: (1) α,β4; (2) 7/2α<4,β(5α+7)/(2α),γ7/(2α5); (3) 3<α7/2,β,γ7/(2α5).  相似文献   
79.
80.
本文基于密度泛函理论预测了一种用于可见光范围光催化制氢的新型二维非金属纳米材料,该材料可以由HTAP分子脱氢聚合得到,具有良好的结构稳定性,且带隙为2.12 eV,可以实现可见光区域的光捕获. 材料的带边能级位置恰好包裹水的氧化还原电位,有利于实现全光解水. 电子的迁移率略高于空穴的迁移率,有利于光生载流子的分离. 光生电子可以提供足够的驱动力使得析氢反应自发进行.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号